
GOURD-TUTORIAL(7) DelftBlue Tools Manual GOURD-TUTORIAL(7)

NAME

gourd-tutorial - A step-by-step walkthrough for the Gourd experiment scheduler.

INTRODUCTION

Welcome to gourd-tutorial!

If you haven’t been introduced yet, gourd(1) is an application that makes it easy to set up experiments
on a supercomputer. By experiment, we mean a large-scale comparative evaluation of one or more
algorithms (runnable programs) that each run on a set of inputs and are subsequently timed and
profiled.

While this tool offers a lot of versatility, this set of runnable examples will show that gourd experi-
ments only take a minute to set up.

INSTALLATION AND REFERENCE

This tutorial is designed to be interactive, so be sure to have a working copy of gourd(1) installed on
your computer. You can verify this by typing gourd version in a terminal. For installation instructions,
refer to the README.md file in the source repository.

When installed, you will also have access to the user manuals. For Linux, macOS, and the like, type
man gourd-tutorial to see this tutorial or gourd and gourd.toml for complete documentation.

INTERACTING WITH GOURD

Gourd is a command-line application that keeps life easy. You take actions by typing gourd followed
by a command in your terminal; a complete list is in the manual.

For example, type: gourd init --example fibonacci-comparison my_fib

The gourd init commandwill set up the myexample folder tomatch the example below! Furthermore,
gourd init --list-examples will show what other examples are accessible to you.

FIBONACCI COMPARISON

Let’s begin by designing a simple experiment. We will compare three versions of an algorithm that
calculates Fibonacci numbers.

First, let’s define the experimental setup using a gourd.toml file. This file will specify the files,
programs, and parameters of our setup in a reproducible way.

Open gourd.toml in an editor and type in the following lines:

` ./gourd.toml
` +---+
1 | experiments_folder = "experiments" |
2 | metrics_path = "experiments" |
3 | output_path = "experiments" |
4 | |
` /_`_/

25 MARCH 2025 1

GOURD-TUTORIAL(7) DelftBlue Tools Manual GOURD-TUTORIAL(7)

` ___\

In the TOML format, values (such as file paths) are in quotes ("). You can also add comments using
the hash character.

The lines above set up the folder structure for our experiment’s outputs. This particular setup puts
everything in the same folder.

Now, let’s configure programs - the algorithms we are evaluating.

Defining programs

__
` /_ _/
` \ ./gourd.toml \
` |` `|
5 | [program.fibonacci] |
6 | binary = "./fibonacci" |
7 | |
8 | [program.fast-fibonacci] |
9 | binary = "./fibonacci-dynamic" |
10 | |
11 | [program.fastest-fibonacci] |
12 | binary = "./fibonacci-dynamic" |
13 | arguments = ["-f"] |
14 | |
` /_`_/
` ___\

The lines above set up three uniquely named programs:

fibonacci: a slow Fibonacci number calculator.
fast-fibonacci a faster version using Dynamic Programming.
fastest-fibonacci: the same binary file as fast-fibonacci run with an additional command-line argu-

ment, -f, which should make it even faster!

Each program links to a binary – the executable file that runs our algorithm. In this case, our
Fibonacci algorithms are compiled in Rust. If you are following this tutorial with gourd init –
example fibonacci-comparison, the folder contains both binaries: fibonacci and fibonacci-dynamic.

In our evaluation, we are going to see how the three programs compare when running different test
cases as inputs. Let’s add inputs to our gourd.toml.

Defining inputs

__
` /_ _/
` \ ./gourd.toml \
` |` `|
15 | [input.test_2] |
16 | input = "./inputs/input_2" |
17 | |
18 | [input.test_8] |

25 MARCH 2025 2

GOURD-TUTORIAL(7) DelftBlue Tools Manual GOURD-TUTORIAL(7)

19 | input = "./inputs/input_8" |
20 | |
21 | [input.test_35] |
22 | input = "./inputs/input_35" |
23 | |
24 | [input.bad_test] |
25 | input = "./inputs/input_bad" |
26 | |
` /_`_/
` ___\

The lines above set up four uniquely named inputs. Each input refers to a file whose contents are fed
into the program.

In this example, inputs test_2, test_8, and test_35 link to files containing the numbers 2, 8,
and 35. These should make the Fibonacci algorithms output the 2nd, 8th, and 35th numbers of the
Fibonacci sequence. The input named bad_test contains "some text", which isn’t a valid number
- let’s see how this will crash the programs.

Inputs are combined with programs in a cross product to create runs. Each program-input combina-
tion is exactly one run. In this example, 3 programs * 4 inputs results in 12 runs.

Running the evaluation

Our gourd.toml is complete - now it is time to run the evaluation using gourd run. Typing gourd run
in a terminal will tell you that it has two subcommands:

local Run locally on your computer. If connected via SSH to a cluster computer, local uses
the very limited computing power of the login node.

slurm Send to the SLURM cluster scheduler on a supercomputer.

The slurm subcommand needs some extra configuration, so let’s gowith local for now. Type gourd run lo-
cal.

| $ gourd run local
|
| > info: Experiment started
| >
| > For program fast-fibonacci:
| > 0. bad_test.... failed, code: 25856
| > 1. test_2...... success, took: 171ms 903us 417ns
| > 2. test_35..... success, took: 172ms 2us 417ns
| > 3. test_8...... success, took: 175ms 546us 750ns
| >
| > For program fastest-fibonacci:
| > 4. bad_test.... failed, code: 25856
| > 5. test_2...... success, took: 149ms 219us 542ns
| > 6. test_35..... success, took: 154ms 733us 667ns
| > 7. test_8...... success, took: 146ms 695us 334ns
| >
| > For program fibonacci:
| > 8. bad_test.... failed, code: 25856

25 MARCH 2025 3

GOURD-TUTORIAL(7) DelftBlue Tools Manual GOURD-TUTORIAL(7)

| > 9. test_2...... success, took: 272ms 265us 667ns
| > 10. test_35..... success, took: 328ms 935us 292ns
| > 11. test_8...... success, took: 273ms 159us 167ns
| >
| >
| > [] #################### Running jobs... 12/12
| > info: Experiment finished
| >
| > info: Run gourd status 1 to check on this experiment

If you are seeing similar output, you have successfully reproduced a Gourd experiment!

Displaying status

The run command has created an experiment from the experimental setup and executed it on your
computer. Each of the twelve runs are shown here, grouped by program, alongside with their com-
pletion status. In fact, you can show this view at any time by typing gourd status.

We can see that runs 0, 4, and 8 have failed. Let’s take a closer look at why that is! Type gourd status -
i 4 to check on run number 4.

| $ gourd status -i 4
|
| > program: fastest-fibonacci
| > binary: FetchedPath("/fib-folder/fibonacci-dynamic")
| > input: Regular("bad_test")
| > file: Some(FetchedPath("/fib-folder/inputs/input_bad"))
| > arguments: ["-f"]
| >
| > output path: "/fib-folder/experiments/1/fastest-fibonacci/4/stdout"
| > stderr path: "/fib-folder/experiments/1/fastest-fibonacci/4/stderr"
| > metric path: "/fib-folder/experiments/1/fastest-fibonacci/4/metrics"
| >
| > file status? failed, code: 25856
| > metrics:
| > user cpu time: 1ms 274us
| > system cpu time: 1ms 735us
| > page faults: 1
| > signals received: 0
| > context switches: 11

The detailed status, which you can see above, allows us to easily inspect the experiment’s output and
errors by accessing the files at output path.

Rerunning failed runs

These files reveal that bad_test fails because the Fibonacci programs are expecting a number, but
the input is ”some text” instead! Let’s fix the problem and replace it with 10, a decidedly more valid
number.

25 MARCH 2025 4

GOURD-TUTORIAL(7) DelftBlue Tools Manual GOURD-TUTORIAL(7)

` ./inputs/input_bad
` +---+
` | <<<<<<< new version |
` | 10 |
` | ======= |
` | some text |
` | >>>>>>> old version |
` +---+

Now we have fixed the problem, and the input called bad_test is not so bad after all.

You can imagine that running the whole experiment again when only 1/4 of the results are invalid
would be a waste. We are going to use gourd rerun to repeat only the runs that failed.

| $ gourd rerun
|
| > ? What would you like to do?
| > * Rerun only failed (3 runs)
| > Rerun all finished (12 runs)
| > [↑↓ to move, enter to select, type to filter]
| >
| > info: 3 new runs have been created
| > info: Run 'gourd continue 1' to schedule them

The gourd rerun command suggests rerunning the failed runs only! Another option supported by
rerun is to specify a list of IDs for it to reschedule.

After rerun, it is necessary to use gourd continue to actually execute the newly created runs. Try this
in your terminal.

Collecting data

Our simple Fibonacci experiment is done evaluating our two algorithms. All that remains to be done
is collecting the runtime data. Fortunately, gourd also provides a simple way to process the numerous
metrics files that our runs have generated.

By running gourd analyse table, you can create a CSV file that collects all metrics from the appli-
cation’s run. On UNIX-like operating systems, RUsage provides a large array of useful data such as
context switches and page faults in addition to basic timing.

Furthermore, gourd analyse supports ways of collecting and visualising the experiment’s output. Try
the gourd analyse plot, which produces a cactus-plot summary of the programs’ runtimes.

SEE ALSO

gourd(1)

gourd.toml(5)

25 MARCH 2025 5

GOURD-TUTORIAL(7) DelftBlue Tools Manual GOURD-TUTORIAL(7)

CONTACT

Ανδρέας Τσατσάνης <a.tsatsanis@tudelft.nl>
Lukáš Chládek <l@chla.cz>
Mikołaj Gazeel <m.j.gazeel@tudelft.nl>

25 MARCH 2025 6

